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SUMMARY

The aim of this study was to objectively evaluate the applicability of VNIR spec-
troscopy (spectroscopy in the visible and near-infrared region of the elec-
tromagnetic spectrum) for the prediction of forest soil properties. The most 
appropriate combinations of statistical pre-processing (no pre-processing, 
continuum removal, 1st and 2nd derivative) and processing (PLSR – partial least 
squares regression, PCR – principal component regression, SVM – support vec-
tor machines) methods in specific spectral bands were sought for each soil 
property. The combination of the 1st derivative and SVM methods proved to be 
generally the most successful in the whole VNIR spectral band (400–2500 nm). 
However, in some cases (different forms of magnesium, manganese, iron, or 
aluminium) other models have proved to be successful. The best predictable 
properties (R2 > 0.6) include soil pH, oxidizable carbon content, and the con-
tents of aluminium, iron, silicon, or calcium (at higher concentrations). Not very 
high prediction success (R2 < 0.3) was found for parameters that take on low 
values (the content of sodium, manganese, or divalent aluminium complexes). 
The results show that VNIR spectroscopy is a useful method for the prediction 
of forest soil properties. It cannot completely replace classical analysis, but it 
can complement it very well, especially in practice. For example, it can help 
to thicken the data network in soil mapping and refine the information better 
than other spatial estimation methods. It can be used in cases where a signif-
icant amount of data is needed in a short time frame and at minimum cost. It 
is suitable for monitoring trends over time or for rapid exploration of an area.

INTRODUCTION

Information on soil properties is required for a variety of purposes, such as pre-
cision agriculture or forestry, soil quality assessment, soil mapping or soil con-
servation. It is necessary to collect a large amount of analytical data within soil 
examination. The collection and subsequent analysis of soil samples using tra-
ditional methods is time consuming and costly [1, 2]. Therefore, indirect meas-
urements and predictions of soil properties using mathematical models are 
increasingly being used. Several studies have shown that spectroscopy in 
the visible (VIS) and near-infrared (NIR) region of the electromagnetic spec-
trum is a suitable method for assessing soil properties. The models published 
so far are not universal and are only relevant under specific conditions and 
for certain soil groups. This study aims at assessing the applicability of spec-
troscopy in the evaluation of properties of forest soils in the Czech Republic 
based on the relationships between spectral features and soil properties deter-
mined by traditional laboratory methods. More than 4,500 samples taken from 
whole soil profiles were used for this assessment. Appropriate combinations of 

data preparation methods (1st and 2nd derivatives [3], continuum removal) and 
statistical techniques of partial least squares regression (PLSR), support vec-
tor machines (SVM) and principal component regression (PCR) were tested to 
develop predictive models.

THE METHODS

The study was carried out using 4,680 samples taken from whole soil profiles 
using a  soil probe or from excavated soil material. Some of the soil samples 
were obtained from the Department of Soil Science and Soil Protection at the 
Czech University of Life Sciences in Prague, the rest were borrowed from other 
departments. The sampling sites were chosen to cover the whole territory of 
the Czech Republic and to include different forest soil types. The sampling sites 
were located at different altitudes and in forests with different species com-
position. The study did not deal with field measurements; only dried samples 
treated to fine soil I  (particle size < 2 mm) were used [4]. This eliminated the 
influence of soil moisture, which is essential on the spectral curves and hinders 
the field application of the method to a great extent. Selected analyses were 
performed with soil samples using conventional methods (Tab. 1).

Fig. 1. FieldSpec 3 spectrometer (photo: Josef Kratina)
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The spectra were measured in samples treated to fine soil I  in Petri dishes 
using a FieldSpec 3 spectrometer (ASD Inc., USA) with a High Intensity Contact 
Probe (Fig. 1). The range of the spectrometer is 350–2,500 nm.

The program Statistica 12 (StatSoft) was used to determine basic statistical 
descriptive characteristics. The program ViewSpec Pro 6.0 (ASD Inc.) was used 
to pre-process the spectral data, namely, to smooth the spectral curves (splice 
correction). The R program (R Core Team) was used to adjust the spectra using 
continuum removal. The programs Unscrambler X 10.3 (CAMO Software) and 
R (R Core Team) were used for their calibration (partial least squares regression, 
support vector machines, principal components regression).

The relationship between spectral features and soil properties, which were 
obtained using traditional laboratory methods, was evaluated statistically. The 
appropriateness of using different data preparation methods such as 1st and 2nd 
derivative or continuum removal (unification of spectral curves obtained with 
different instruments or under different light conditions) was tested. Published 
models for predicting soil characteristics from spectral features were tested, their 
parameters were adjusted, or new models were created using statistical meth-
ods of PLSR, PCR and SVM. For the statistical evaluation, not only all the data were 
used together, but they were also divided into subsets by sampling area and by 
horizon to describe the most appropriate data entry method for successful pre-
diction. The effect of the spectral band used on the success of the prediction was 
also tested. Some properties are better predicted using the entire VNIR spectrum, 
while for others it is more appropriate to use only a selected spectral band, which 
is chosen either experimentally or based on the literature [14–17].

The new models have been validated. The reported predictions, expressed in 
terms of R2 (coefficient of determination) and RMSE (root mean square error) val-
ues, are the result of the cross validation process in which the data set is divided 
into several subsets, one (10% of the whole) is removed and the remaining ones are 
used for model calibration. The model is then applied to the previously removed 
set, the values predicted by the model are compared with those measured in the 
laboratory. This is repeated for all subsets. The R2 and RMSE parameters are then cal-
culated. The model was calibrated for the groups formed in this way. Subsequently, 
the new models were subjected to external validation, in which the model was 
applied to a different data set and the success of the prediction was determined.

Tab. 1. Used methods of conventional analysis

Property Units Description of analysis

pH_H2O – Soil pH (H2O) [4]

pH_CaCl2 – Soil pH – CaCl2 [5]

pH_KCl – Soil pH – KCl [6]

Cox %
Oxidizable carbon content using modified 
Tyurin method [4]

KVK mmol.100 g-1 Cation exchange capacity (Bower) [4]

BS mmol.100 g-1 Saturation of sorption complex with 
basic cations [4]

N mg.kg-1 NIR spectroscopic determination [7]

P_M3 mg.kg-1 Phosphorus extracted with Mehlich III 
solution [4]

P_AR mg.kg-1 Phosphorus extracted with aqua regia [8]

K_M3 mg.kg-1 Potassium extracted with Mehlich III 
solution [4]

K_AR mg.kg-1 Potassium extracted with aqua regia [8]

K_BaCl2 mg.kg-1 Exchangeable cations (potassium), leachate – 
BaCl2 [9]

Ca_M3 mg.kg-1 Calcium extracted with Mehlich III solution [4]

Ca_AR mg.kg-1 Calcium extracted with aqua regia [8]

Ca_BaCl2 mg.kg-1 Exchangeable cations (calcium), leachate – 
BaCl2 [9]

Mg_M3 mg.kg-1 Magnesium extracted with Mehlich III 
solution [4]

Mg_AR mg.kg-1 Magnesium extracted with aqua regia [8]

Mg_BaCl2 mg.kg-1 Exchangeable cations (magnesium), 
leachate – BaCl2 [9]

Na_AR mg.kg-1 Sodium extracted with aqua regia [8]

Na_BaCl2 mg.kg-1 Exchangeable cations (sodium), leachate – 
BaCl2 [9]

Mn_BaCl2 mg.kg-1 Exchangeable cations (manganese), lea-
chate – BaCl2 [9]

Mn_AR mg.kg-1 Mangan extracted with aqua regia [8]

Mn_KCl mg.kg-1 Mangan extracted with KCl solution [10]

Mn_ox mg.kg-1 Mangan extracted with oxalate [11]

Mn_dit mg.kg-1 Mangan extracted with dithionite [12]

Fe_BaCl2 mg.kg-1 Exchangeable cations (iron), leachate – BaCl2 [9]

Fe_AR mg.kg-1 Iron extracted with aqua regia [8]

Fe_KCl mg.kg-1 Iron extracted with KCl solution [10]

Fe_ox mg.kg-1 Iron extracted with oxalate [11]

Property Units Description of analysis

Fe_dit mg.kg-1 Iron extracted with dithionite [12] 

Al_BaCl2 mg.kg-1 Exchangeable cations (aluminium), 
leachate – BaCl2 [9]

Al_AR mg.kg-1 Aluminium extracted with aqua regia [8]

Al_KCl mg.kg-1 Aluminium extracted with KCl solution [10]

Al_ox mg.kg-1 Aluminium extracted with oxalate [11]

Al_dit mg.kg-1 Aluminium extracted with dithionite [12]

Al (X) 1+ mg.kg-1 Aluminium forms in KCl leachate [10]

Al (Y) 2+ mg.kg-1 Aluminium forms in KCl leachate [10]

Al 3+ mg.kg-1 Aluminium forms in KCl leachate [10]

VA mmol.kg-1 Exchangeable acidity Al+H [13]

Si_ox mg.kg-1 Silicon extracted with oxalate [11]

Si_dit mg.kg-1 Silicon extracted with dithionite [12]
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RESULTS AND DISCUSSION

Success of a method in predicting soil properties is highly dependent on the 
appropriate way of entering the input data, their statistical pre-processing and 
evaluation. The aim of this study was to fi nd the most suitable combination of 
data entry method, statistical pre-processing, and spectral data processing to 
obtain the best results for soil property prediction. 

The whole dataset and its division by horizons
and regions

The fi rst statistically evaluated dataset was the whole dataset regardless of sam-
pling area or horizon. Spectra without pre-processing in the entire 350–2,500 nm
range were used. The statistical method used was partial least squares regres-
sion (PLSR), which is often recommended in the literature. In Fig. 2, which shows 
all spectra together, we can see the large variability of their course. This may be 
due to diff erent soil properties, e.g. diff erent amounts of soil organic matter in 
the mineral and organic horizons. 

Properties common to as many measured samples as possible were sought. 
Specifi cally, it concerned the amount of oxidizable carbon – Cox, total nitrogen 
content and pH_CaCl2. The results seem to be very good (Cox – R2 = 0.92, nitro-
gen content – R2 = 0.77, pH_CaCl2 – R2 = 0.51), but their publication would only 
be correct in the case of the pH_CaCl2. According to the frequency distribution 
of the data of the individual properties, the normal distribution is only in the 
case of pH_CaCl2. The results for oxidizable carbon and nitrogen content form 
two clusters. These give a high value of the coeffi  cient of determination when 
fi tted through the regression line. However, the results are biased and cannot 

be interpreted correctly. The pH_CaCl2 prediction is more successful despite 
the lower value of the coeffi  cient of determination. Since normal distribution 
of the data is a prerequisite for the application of PLSR, the set had to be sub-
jected to a diff erent statistical treatment.

Tab. 2 shows the results of the prediction of pH_CaCl2 and nitrogen content 
using the whole set and when it is divided into organic and mineral horizons. It 
can be seen from the results that, in contrast to the previous results, the whole 
set shows a higher R2 value, but the root mean square error (RMSE) increases 
along with it, although it should ideally decrease.

The preliminary results show that division of the dataset by sampling areas 
does not always provably increase the success rate of soil property prediction 
and, therefore, this data preparation method cannot be recommended une-
quivocally. The conclusion is more complicated when it comes to division of 
the data by soil horizon. In some cases, such a  division appears to be more 
advantageous, while in other cases the prediction success rate, expressed by 
the coeffi  cient of determination, is signifi cantly better in favour of the undi-
vided set. In such a situation, however, another variable describing the success 
of the prediction, the root mean square error, should be observed. The RMSE, 
unlike the coeffi  cient of determination, should be decreasing, which does not 
happen in the above cases. 

Tab. 2. Predictions according to horizons

R2 RMSE

pH_CaCl2 – whole set 0.51 0.46

N [mg.kg-1] – whole set 0.77 0.31

pH_CaCl2 – mineral horizons 0.32 0.44

pH_CaCl2 – organic horizons 0.64 0.44

N [mg.kg-1] – mineral horizons 0.44 0.11

N [mg.kg-1] – organic horizons 0.37 0.25

Fig. 3. The course of spectral curves – various pre-processing methods 
Fig. 2. Spectra representation – the summary data set
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Tab. 3. The best predictions by method and band – summary

Property Horizon (area) Pre-processing
Statistical 
method

Spectral band [nm] R2 validation
RMSE 
validation

pH_H2O min. hor. 1st derivative SVM 400–2,500 0.46 0.40

pH_CaCl2 min. hor. 1st derivative SVM 400–2,500 0.45 0.40

pH_CaCl2 org. hor. 1st derivative, CR SVM 400–2,500 0.72 0.39

pH_KCl A horizons 1st derivative SVM 400–2,500 0.55 0.12

Cox min. hor. 1st derivative SVM 400–2,500 0.68 1.85

Cox org. hor. 1st derivative SVM 400–2,500 0.84 3.71

Cox A horizons 1st derivative SVM 400–2,500 0.48 1.63

KVK A horizons None PLSR 400–2,500 0.37 14.37

KVK min. hor. 1st derivative SVM 400–2,500 0.64 22.52

BS min. hor. 1st derivative SVM 400–2,500 0.44 20.65

N min. hor. 1st derivative SVM 400–2,500 0.57 0.10

N org. hor. 1st derivative SVM 400–2,500 0.62 0.19

P_M3 min. hor. 1st derivative SVM 400–2,500 0.10 26.68

P_AR org. hor. 1st derivative SVM 400–2,500 0.34 243.91

K_M3 min. hor. 1st derivative SVM 400–2,500 0.31 54.00

K_AR org. hor. 1st derivative SVM 400–2,500 0.57 657.13

K_BaCl2 min. hor. 1st derivative SVM 400–2,500 0.51 20.29

K_BaCl2 A horizons 1st derivative SVM 750–2,500 0.42 0.87

Ca_M3 min. hor. CR PLSR 1,100–2,500 0.36 687.14

Ca_AR org. hor. 1st derivative SVM 400–2,500 0.76 2,198.70

Ca_BaCl2 A horizons None PLSR 1,100–2,500 0.33 0.19

Ca_BaCl2 min. hor. 1st derivative SVM 400–2,500 0.27 13.33

Mg_M3 min. hor. CR PLSR 1100–2,500 0.32 146.92

Mg_AR org. hor. 1st derivative SVM 400–2,500 0.43 1,303.50

Mg_BaCl2 A horizons 1st derivative PLSR 400–2,500 0.43 15.18

Mg_BaCl2 min. hor. 1st derivative SVM 400–2,500 0.32 3.00

Na_AR org. hor. 1st derivative SVM 400–2,500 0.23 40.40

Na_BaCl2 min. hor. 1st derivative SVM 400–2,500 0.35 0.18

Na_BaCl2 A horizons 1st derivative SVM 400–2,500 0.16 7.93

Mn_BaCl2 min. hor. 1st derivative SVM 400–2,500 0.28 1.49

Mn_BaCl2 A horizons 1st derivative SVM 400–2,500 0.51 32.22

Mn_AR org. hor. 1st derivative SVM 400–2,500 0.51 1,141.80

Mn_KCl A horizons 1st derivative SVM 400–2,500 0.48 58.28

Mn_ox A horizons CR PLSR 400–2,500 0.56 107.65
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Organic and mineral horizons are fundamentally different in nature and dif-
ferent properties are usually determined for them in the laboratory. If some 
properties are determined together for the horizons of the whole soil profile, 
the differences are clearly visible. The data do not have a normal distribution 
(it is bimodal) and the results cannot be interpreted correctly. This preliminary 
conclusion was further verified using the SVM method, which is not as funda-
mentally sensitive to the data distribution as regression (linear) methods.

Effect of the statistical method used on the success 
of the prediction

The data were subjected to various combinations of pre-processing (no 
pre-processing, 1st and 2nd derivatives, continuum removal) and statistical 
methods (PLSR, PCR, SVM). An example of the change in the spectral curves 
according to the pre-processing method used is shown in Fig. 3. The two most 
effective combinations were always selected for each property and they were 
refined individually.

In their paper [18], Viscarra Rossel and Behrens identified SVM and PLSR as 
the two most successful methods. The results of this study confirm this, espe-
cially in favour of SVM, and provide additional information by combining these 
methods with different pre-processing methods. In most cases, the highest 

prediction success was found when combining the 1st derivative of spectral 
data and SVM, followed by PLSR on data without pre-processing and SVM after 
continuum removal. Another successful combination in some cases was the 
use of the 2nd derivative and SVM. In contrast, regression methods applied to 
data pre-processed with the 2nd derivative were clearly the least successful. 
The regression methods of PLSR and PCR provide very similar results, mostly in 
slight favour of PLSR.

Prediction of individual properties

Based on the literature [14, 15, 17] and the above findings, the best combinations 
of the type of pre-processing used, the statistical method and, more recently, 
the spectral band selected were sought. For each property, the most success-
ful combinations of methods were selected according to previous findings and 
subjected to further testing. The modification of the spectra by clipping the 
350–400 nm band, which is significantly interfered by noise at the UV-visible 
interface, was common to all properties. In general, the combination of the 1st 
derivative spectral data pre-processing method and the support vector machine 
statistical method using the entire VNIR spectral band (400–2,500 nm) appears 
to be the best. However, there are cases where other combinations of methods 
and other (narrower) spectral bands have proven to be most appropriate. For 

Property Horizon (area) Pre-processing
Statistical 
method

Spectral band [nm] R2 validation
RMSE 
validation

Mn_dit A horizons 1st derivative SVM 400–750 0.55 121.04

Fe_BaCl2 min. hor. 1st derivative SVM 400–2,500 0.38 1.38

Fe_BaCl2 A horizons None PLSR 400–2,500 0.65 44.59

Fe_AR org. hor. 1st derivative SVM 400–2,500 0.51 5,757.50

Fe_KCl A horizons None PCR 400–2,500 0.67 68.64

Fe_ox A horizons None PLSR 1,100–2,500 0.68 2,033.40

Fe_dit A horizons None PLSR 750–2,500 0.69 2,370.50

Al_BaCl2 min. hor. 1st derivative SVM 400–2,500 0.59 14.99

Al_BaCl2 A horizons None PLSR 400–800 0.58 120.53

Al_AR org. hor. 1st derivative SVM 400–2,500 0.70 2,395.20

Al_KCl A horizons None PCR 400–2,500 0.62 106.41

Al_ox A horizons None PLSR 400–2,500 0.63 617.01

Al_dit A horizons 1st derivative SVM 400–2,500 0.45 824.18

Al (X) 1+ A horizons None PCR 600–800 0.63 15.56

Al (Y) 2+ A horizons 1st derivative SVM 1,100–2,500 0.44 19.21

Al 3+ A horizons None PCR 400–2,500 0.58 91.29

VA min. hor. 1st derivative SVM 400–2,500 0.58 16.58

VA A horizons None PCR 400–2,500 0.49 16.64

Si_ox A horizons 1st derivative SVM 400–2,500 0.35 120.40

Si_dit A horizons 2nd derivative SVM 400–750 0.59 979.57
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example, calcium and magnesium determined in the aqua regia leachate were 
best predicted by the PLSR method applied to spectral data modified using the 
continuum removal function in the near-infrared region of the 1,100–2,500 nm 
spectrum. In most cases, the PLSR method (Mg, Mn, Fe, Al) instead of SVM was 
best for the elements determined in oxalate. The diversity of the models was 
particularly observed in the case of iron and aluminium prediction, i.e. for two 
elements that are highly monitored in forest soils. The spectral detectability of 
the different forms of aluminium varies considerably. The least successfully pre-
dicted divalent form, which binds to organic matter but is present in extremely 
small amounts, can alternatively be predicted by subtracting the content of 
the monovalent and trivalent complexes from the total content determined in 
a common leachate, in this case it is the KCl leachate. Tab. 3 shows the best mod-
els for predicting each soil property, including the validation R2 and RMSE. The 
set is divided by the soil horizon or group of horizons.

Testing and modification of found models

The found models were also applied to independent data sets. The prediction 
success rates of each property before and after the models´ application were 
compared. The data used as those “before model application” were subjected 
to standard statistical processing, i.e., the PLSR method across the whole VNIR 
band on the non-pre-processed spectra. The models that improved the pre-
diction results were found to be appropriate and universal. In cases the pre-
diction success increased very little, remained unchanged, or even decreased, 
other models were sought based on existing knowledge.

Tab. 4 shows the best models for predicting forest soil properties. In addi-
tion to the success of the prediction, emphasis was put on the versatility of the 
models. In case a property was determined in various ways, but the model is 
common to all these ways, only the given property is indicated in the table. If 
the determination method had an impact on the spectral detectability and 
therefore required the use of a different model, the properties are described 
individually together with the determination method.

CONCLUSION 

The aim of the study was to objectively evaluate the applicability of spectros-
copy in the visible and near-infrared region of the spectrum for predicting for-
est soil properties. These soils differ fundamentally from agricultural soils in 
their appearance, development, physical and chemical processes, presence of 
organic horizons, etc. They are also usually monitored for different properties. It 
has been found that the division of the data set by sampling area is not a signif-
icant input criterion; the distribution of the data is more important. Due to the 
large differences between organic and mineral horizons, it is recommended, 
on the basis of the results, to examine these horizons separately. 

As a large amount of data was available, it was possible to split the data into 
a larger training set, on which the models were trained thoroughly one by one, 
and a testing set, on which the models were tested and further adjusted based 
on the results if necessary. In this way, the most appropriate combinations of 
statistical pre-processing and processing methods in specific spectral bands 
were found for each soil property. The combination of 1st derivative and sup-
port vector machine in the whole VNIR spectral band (400–2,500 nm) is gen-
erally found to be the most successful. However, in some cases, other models 
have proven successful. The best predictable properties (R2 > 0.6) include soil 
pH, and the contents of oxidizable carbon, aluminium, iron, silicon, or calcium 
(at higher concentrations). Not very high prediction success (R2 < 0.3) was found 
for parameters that take on low values (the content of sodium, manganese, or 
divalent aluminium complexes).

Tab. 4. The best versatile statistical models for the prediction of individual properties

Property Pre-processing
Statistical 
method

Spectral 
band [nm]

pH_H2O 1st derivative SVM 400–2,500

pH_CaCl2 1st derivative SVM 400–2,500

pH_KCl 1st derivative SVM 400–2,500

Cox 1st derivative SVM 400–2,500

KVK 1st derivative SVM 400–2,500

BS 1st derivative SVM 400–2,500

N 1st derivative SVM 400–2,500

P 1st derivative SVM 400–2,500

K 1st derivative SVM 400–2,500

Ca 1st derivative SVM 400–2,500

Mg_M3 continuum removal PLSR 1,100–2,500

Mg_AR 1st derivative SVM 400–2,500

Mg_vym 
(BaCl2) 1st derivative SVM 400–2,500

Na 1st derivative SVM 400–2,500

Mn_AR, KCl 1st derivative SVM 400–2,500

Mn_ox continuum removal PLSR 400–2,500

Mn_dit 1st derivative SVM 400–750

Fe_vym 
(BaCl2) 1st derivative SVM 400–2,500

Fe_AR 1st derivative SVM 400–2,500

Fe_KCl 1st derivative SVM 400–2,500

Fe_ox No pre-processing PLSR 1,100–2,500

Fe_dit No pre-processing PLSR 750–2,500

Al_vym 
(BaCl2) 1st derivative SVM 400–2,500

Al_AR 1st derivative SVM 400–2,500

Al_KCl No pre-processing PLSR 400–2,500

Al_ox No pre-processing PLSR 400–2,500

Al_dit 1st derivative SVM 400–2,500

Al (X) 1+ No pre-processing PCR 600–800

Al (Y) 2+ 2nd derivative SVM 1,100–2,500

Al 3+ No pre-processing PLSR 400–2,500

VA 1st derivative SVM 400–2,500

Si 1st derivative SVM 400–2,500
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The results show that VNIR spectroscopy is a  useful method for the pre-
diction of forest soil properties. It cannot completely replace classical analysis, 
but it can complement it. For example, in soil mapping, it can help to thicken 
the data network and refine the information better than other spatial estima-
tion methods. It can be used in cases where large amounts of data are needed 
in a short time frame and at minimum cost. It is suitable for monitoring trends 
over time or for rapid examination of samples from an area.
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